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Abstract
Kinesin is a dimeric molecular motor, which processively moves along the
microtubule in a sequence of 8 nm steps. The stepping dynamics needs to be
clarified: there are controversial reports about the existence of substructures
in the mechanical step and the step timescale. We present observations of the
kinesin steps in the absence of external forces, measured with subnanometre
precision and microsecond time resolution using a technique which we have
recently introduced and named travelling wave tracking. The data suggest that,
at zero load, the 8 nm step occurs in less than 30 µs and without any long
mechanical substeps.

1. Introduction

The mechanism by which the kinesin–microtubule complex converts the chemical energy
obtained from the ATP hydrolysis into mechanical work is becoming better and better
understood. The genetic approach, together with an increasing amount of structural
information, has established the relationship between the structure and the function of the
kinesin [1, 2]. Complementarily, single molecule studies have supplied a detailed description
of the kinesin–microtubule dynamics. Conventional kinesin is a dimer of two identical
subunits, composed of two motor heads and a coiled-coil stalk. This two-headed motor
moves processively [3] towards the plus-end of microtubules and can develop forces of a few
piconewtons (stall force ≈ 6–7 pN). The motion is achieved by discrete steps of 8 nm [4–6],
which correspond to the periodicity of the αβ-tubulin arrangement in microtubules.

In order to describe the physical mechanism of the kinesin step, two hypotheses have
been proposed. In a pure mechanical model, a conformational change takes place during the
chemical cycle and propels the trailing head forwards (toward the next binding site) while the
leading head remains tightly attached to the microtubule. An alternative model is based on a
thermal ratchet mechanism: the trailing head unbinds from the microtubule and, by thermal
diffusion, randomly searches for the next binding site. Regimes combining both mechanisms
are also possible.
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To understand this mechanism, it is essential to provide a detailed description of the kinesin
motion, such as the timescale of the step, its shape and any internal substructure [7, 8].

The existence of substructures within the 8 nm step is a controversial point: some works
on the drosophila kinesin (kinesin-1) have reported the existence of mechanical substeps [9, 10]
in the presence of an external load (force > 1 pN). Conversely, other experiments performed
in similar conditions showed that the step happens with no internal structure [11]. Additional
information about the step features in the limit of zero force can help to confirm or exclude the
existence of substeps.

In order to measure the step details in the absence of external force, we developed a
technique for the tracking of particles with high spatial and temporal resolution: travelling
wave tracking (TWT) [12]. This technique, described in section 2, permits the tracking of
the motion of a kinesin without external manipulation and makes possible the measurements
at zero force. The experiments are carried out in a classical bead assay configuration, with a
200 nm polystyrene particle, coated with kinesin and free to move along the microtubule. The
bead position is recorded with subnanometre precision and a temporal resolution of 2 µs. As
the spatial resolution is limited by the thermal fluctuations of the bead, we average over many
steps in order to improve the signal to noise ratio. We thus can look for any internal structure
within the 8 nm step, and provide bounds on the stepping timescale.

2. Travelling wave tracking

Conventional tracking techniques are based on spatially resolved detectors, and consist in
measuring the light scattered from a relatively small probe, a small bead or fluorescent dye,
moving in a uniformly illuminated field [13]. These techniques use charge-coupled devices
(CCD cameras) or quadrant photodiode detections.

The travelling wave tracking (TWT) technique works in the opposite way: the scattered
light is recorded by a point detector (Avalanche Photodiode—APD), with a broad bandwidth
(∼10 MHz), as the probe moves through a pattern of fringes. The fringes are obtained
by interference of two laser beams with slightly different frequencies such that the pattern
continuously shifts through the sample at constant speed. As a result, the sample is illuminated
by a progressive sinusoidally modulated intensity

I (x, t) ∝ 1 + sin(qx − �t), (1)

where the fringe period d is 2π/q and the pattern shifts with a speed v f ≡ �/q (in our setup
d ≈ 200 nm and � ≈ 4 MHz).

Let us imagine a small particle (a 100 nm polystyrene bead) immobile in the microscope:
it scatters a light intensity proportional to I (x, t) and hence blinks at frequency �. The APD
records the light scattered from the bead, IAPD ∝ 1 + sin(�t + ϕ), where the phase ϕ depends
on the bead position in the fringes. If the bead moves over a distance δx from the position x ′ to
x ′ + δx , the phase shift will change from ϕ′ to ϕ′ + q · δx . In such a way, any displacement of
the bead can be precisely determined, by measuring the phase shift ϕ(t) as a function of time.
In the following we will describe how the travelling fringes have been designed and the way to
measure the phase shift.

The sinusoidal modulation is obtained by interference of two laser beams, with opposite
wavevectors kx , undergoing total internal reflection at the glass/water interface. In this setup,
the fringe periodicity is 197 ± 2 nm. The light, totally reflected at the glass/water interface,
does not penetrate into the sample and its intensity decreases exponentially with a characteristic
penetration depth ζ � 215 nm. Figure 1 shows a schematic view of the experimental setup, as
previously described [12].
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Figure 1. Scheme of the experimental setup. The travelling wave tracking configuration through
the TIRF objective. The laser beam is compressed by means of a telescope (lenses L1 and L2)
and split into two beams (beam splitter BS1) of equal intensity and polarization. The acousto-
optic modulators (AOMs) shift the frequency of the laser beams, which are focused (lens L3) on
the diameter of the back focal plane, in order to illuminate the sample with two parallel beams of
opposite wavevector kx . The scattered light is collected by the lenses L4, L5 and L6 and focused on
the avalanche photodiode and/or on a CCD camera. M1, M2, M3 and M4 are mirrors and BS2 is a
1%–99% beam splitter.

(This figure is in colour only in the electronic version)

In order to obtain a travelling wave, we chose to slightly shift the frequency ω of both laser
beams by 	ω1 and 	ω2 respectively. The frequency difference � = 	ω1 −	ω2 is set in such
a way that the pattern moves much faster than any probe motion. The resulting intensity on the
specimen can be written as:

I (x, z; t) = | �E1 + �E2|2 = 2E2
0[1 + cos(2kx − �t)]e−z/ζ . (2)

The intensity IAPD, measured by the photodiode, is proportional to I (x, z; t) (equation (2)): the
resulting signal is a sine-like modulation, whose amplitude and phase depend respectively on
the z and the x position of the probe. Both the phase ϕ(t) and the amplitude A(t) are extracted
by using a lock-in amplifier with a 300 kHz bandwidth and they are recorded with a sampling
rate of 625 s−1. The two coordinates x(t) and z(t) are:

x(t) = d

2π
ϕ(t)

z(t) = z0 − ζ ln A(t).
(3)

z0 is unknown, which implies that we do not measure the absolute z position of the probe.
The resolution and the performances of this setup have been characterized using a

piezoelectric stage, which moves a bead stuck to the coverglass by steps of 10 nm. As explained
above, this motion induces a phase shift ϕ(t), which we measure. Figure 2(A) shows how
ϕ(t) (right axis on the plot) evolves as a function of time, proportionally to the bead position
(left axis). The 10 nm displacements are easily observed and the internal structure of the step
can be characterized with nanometre precision. The oscillatory motion after the step is due
to the inertial behaviour of the piezoelectric stage: without any feedback loop, it oscillates
with exponentially damped amplitude after step-like impulses. The intrinsic noise of the
experimental setup can be measured by analysing the parts of the curve where the oscillations
are completely damped (see figure 2, inset). The plot shows that the intrinsic noise is 3 Å RMS;
this noise is white and totally uncorrelated, and it is due the residual shot noise.
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Figure 2. A single colloid
(diameter 200 nm) is fixed on
the coverglass, while the sample
holder is moved in 10 nm
steps by means of a calibrated
piezoelectric stage. Inset: the
residual shot noise limits the
resolution to 3 Å RMS.

3. Methods

Nkin460GST is expressed in BL21 (DE3) E. coli and purified as described in [14, 15].
Preparation of the microtubules. The microtubules are polymerized at a concentration

of 2 mg ml−1 (concentration adjusted with BRB80: 80 mM K-PIPES pH 6.9, 1 mM MgCl2,
1 mM EGTA, 1 mM GTP) and at a temperature of 37 ◦C for 30 min. Then, in order to stop the
polymerization/depolymerization process, taxol is added at a final concentration of 20 µM and
the solution is stored at 37 ◦C for 5 min. Unpolymerized tubulin is removed by centrifugation
at 30 000 RPM, during 15 min at 30 ◦C. The pellet is rinsed and resuspended with BRB80
supplemented with 10 µM taxol.

Bead assay. Microtubules are introduced in a flow chamber and incubated for 3 min to
adsorb on a poly-L-lysine-coated coverglass. The chamber is rinsed with BRB80+taxol and
with filtered casein solution (2 mg ml−1) to avoid nonspecific interaction. After a last wash
with BRB80, the kinesin-coated beads are mixed with the motility buffer and injected into the
chamber. Kinesin-coated beads are prepared by mixing a highly diluted preparation of kinesins
and carboxylated latex beads (200 nm diameter; Polysciences catalog reference 07304). After
incubating for 5–10 min, filtered casein at 1 mg ml−1 is added to this mixture. The motility
buffer is a BRB80 buffer supplemented with 20 µM ATP, 1 mM phosphocreatine, 50 µg ml−1

creatine phosphokinase and an oxygen scavenging system (3 mg ml−1 glucose, 100 µg ml−1

glucose oxidase and 20 µg ml−1 catalase, 2 mM DTT). The coverslip is sealed with VALAP
(Vaseline, lanolin, paraffin at 1:1:1). Observations are performed at room temperature (approx-
imately 25 ◦C).

4. Results

When the microtubules are injected into the observation chamber, most of them are partially
aligned by the flow. We take advantage of this effect to roughly line them up, perpendicularly
to the interference fringes. The kinesin-coated beads come randomly in touch with the
microtubules and move along them through the travelling fringes.

In vitro and at saturating ATP concentration ([ATP] = 10 mM) the N-kinesin moves faster
than 2 µm s−1 [16]. In our experiments, the ATP concentration is tuned to slow the kinesin
down to a speed which allows us to easily distinguish the steps. In general we used [ATP]
� 20 µM. The best way to know the number of motors pulling the bead is to measure the
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Figure 3. Kinesin-coated bead position
as a function of time. Notice the discon-
tinuities in the position, corresponding
to the kinesin 8 nm steps. The data are
acquired with full bandwidth. Inset: one
single 8 nm step.

stall force, like in optical tweezers experiments. As in our setup we do not apply any external
force, we cannot use this strategy. In order to get one single enzyme on the bead, we decrease
the kinesin concentration down to the threshold where no events are observed. During the
experiments, the kinesin concentration is set slightly above this threshold. By using an ex situ
optical tweezers setup, we verified that, at this concentration, the stall force never exceeds a
few piconewtons.

Figure 3 shows a record of kinesin motion: the plot shows the displacement (in
nanometres) as a function of time (milliseconds), recorded with full bandwidth. We observe
one of the most peculiar feature of kinesin: the motor moves along the microtubule by steps
of 8 nm, which correspond to the microtubule periodicity. The inset of figure 3 shows a single
8 nm step with full bandwidth (time resolution of 2 µs).

As explained previously, we are interested in characterizing the kinematical features of
the kinesin steps. From figure 3 it appears that the experimental noise is too high, in the full
bandwidth track, to measure the step. In section 2 we have stated that the TWT resolution
allows us to localize a bead stuck to the coverslip with a precision of ±3 Å, which is roughly
15 times lower than the noise measured with the kinesin. The experimental noise is dominated
by the Brownian motion of the bead, which thermally fluctuates around the kinesin position.

These observations raise two questions. First, how is it possible to extract information
from this noise, in order to describe the dynamical properties of the kinesin-bead link. The
second point is to understand how we can extract the kinesin step features from such a noisy
signal. These questions are addressed in the following section.

5. Analysis and discussion

5.1. Thermal fluctuations

In our experiments, we measure the position xb(t) of a tethered bead pulled by a molecular
motor (figure 3). As previously mentioned, the bead is not stiffly attached to the kinesin and
it thermally fluctuates around the kinesin position xm(t). The kinesin–bead link acts as an
attractive potential U(xb − xm), which depends on the distance between the motor and the
bead. Far from the kinesin steps, the energy released during the step by the ATP hydrolysis
is completely dissipated and the fluctuations are only thermally excited (we will see in the
following that the system relaxes with a time constant of τ � 30 µs). At thermal equilibrium,
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Figure 4. Probability distribution of the lat-
eral distance bead–motor xb −xm. The bead–
motor interaction potential is calculated by
using the Boltzmann distribution.

the Boltzmann law gives the probability P(xb − xm) of finding the bead at position xb in the
potential U(xb − xm):

P(xb − xm) ∝ e−U(xb−xm)/kBT . (4)

Within the ergodic hypothesis, the Boltzmann equation allows us to estimate the potential of
the bead–motor linkage:

U(xb − xm) = −kBT ln P(xb − xm) + const. (5)

Experimentally, the probability P(xb − xm) of finding the bead at a certain distance from the
motor position is calculated for 70 plateaus between steps, corresponding to a total acquisition
time of 0.8 s. As xm is not directly measured, we assume that far from the steps the motor does
not move and its position corresponds to the mean position of the bead (xm = 〈xb〉). Figure 4
shows the distribution P(xb − xm) and the corresponding potential (figure 4, inset): we observe
that the bead-motor interaction can be quite well approximated by a harmonic potential:

U(xb − xm) = κx

2
(xb − xm)2. (6)

The continuous line is the best fit between the data and equation (6). This observation is in
contrast with previous results, based on the optical tweezers technique, that pointed out a
nonlinear behaviour of the kinesin–bead linkage when the kinesin tail is strongly elongated.
The discrepancy can be understood if one takes into account the fact that, in our experiments,
the bead explores only the bottom part of the potential, which is accessible by thermal
fluctuations.

All the forces acting on the bead are known and the motion equation of the bead can be
described by the Langevin equation:

ξ ẋb(t) + κx [xb(t) − xm] = η(t) (7)

where ξ is the viscous drag and η(t) the Brownian force. This equation can be analytically
solved and the autocorrelation function �x(τ ) of the bead position xb(t) becomes

�x(τ ) = 〈xb(t)xb(t + τ )〉 = kBT

κx
e−(κx /ξ)τ + �xδ(τ ) (8)

where �x = 2.5 nm2 accounts for the amplitude of the intrinsic, uncorrelated, experimental
noise. This term includes the shot noise and the uncertainty associated to the analogue/digital
conversion of the signal, as well as all the other high frequency noises. The square amplitude of
the thermal fluctuations is inversely proportional to the stiffness κx of the bead–kinesin linkage.
Such thermally excited fluctuations, relax exponentially with a time constant τx = ξ/κx .
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fluctuations: �x (τ ) = 〈x(t)x(t + τ )〉. The continuous line is the best fit according to equation (8).

The autocorrelation function �x(τ ) is extracted from the experimental data and plotted
in figure 5; the data (◦) are fitted to equation (8) (continuous line). We first observe that the
intrinsic noise is small compared to the thermal fluctuations (�x < kBT/κx ). The fit yields
κx = 4.4 × 10−4 N m−1 and τx = 36 µs, where τx is the time needed by the system to
relax to thermodynamical equilibrium. This time depends, of course, on the load and should
be shorter for smaller cargos. For our 200 nm bead, the relaxation time τx appears to be very
short compared to the ATP-ase cycle, which takes at least a few milliseconds. This means that
after each step, the bead–kinesin system has the time to thermalize and the memory of each
step is lost before the next step. Therefore, all the steps can be considered thermodynamically
independent.

From the values of κx and τx we can estimate the local friction ξ = 1.44 × 10−8 N s m−1.
Within the hypothesis that the only source of friction is the viscous drag of the bead, the
expected value for a free 200 nm bead moving in the water would be 6πηR = 1.9 ×
10−9 N s m−1, i.e. more than seven times smaller than the measured one. Such a high friction
can be understood by taking into account the vicinity of the coverslip. Faucheux et al [17, 18]
demonstrated experimentally that the diffusion coefficient is strongly reduced in a confined
environment. A bead free to move close to a wall diffuses up to three time more slowly than the
same bead in the same fluid. In our case, where the bead is not even free to rotate, the diffusion
coefficient decreases as a logarithmic function of the bead–wall distance [19].

In section 2 we have shown the possibility of tracking the particle simultaneously parallel
and perpendicularly to the substrate, i.e. in this case respectively parallel and perpendicular to
the kinesin motion. In order to characterize the perpendicular zb(t) motion we proceed as for
the xb(t) analysis. The autocorrelation �z follows equation (8) (x being replaced by z) and the
best fit is obtained for κz = 4.3 × 10−4 N m−1 and τz = ξ/κz = 64 µs. This result indicates
that the stiffness of the kinesin–bead bond is essentially the same along the two directions, in
the absence of external forces. In addition, the diffusion coefficient is reduced by a factor of
1.8 in the direction perpendicular to the surface. The coefficient �z (uncorrelated noise) is
larger than kBT/κz (the fit yields �z = 63 nm2 and kBT/κz = 9.5 nm2), which means that the
experimental accuracy is �5 times better in the x direction than along z. This is certainly due
to the absence of lock-in detection along the z-direction: all the low frequency noises (laser
instability and detection noises) are integrated.
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5.2. Kinesin step analysis

As explained in the introduction, the aim of this work is to investigate the kinesin step, in order
to determine the time necessary to move over the eight nanometres and to look for any possible
fine structure of the step. The plot in figure 3 reveals an extremely unfavourable signal/noise
ratio: any step detail is hidden by the noise, whose amplitude is comparable to the step itself.
The extraction of the general features of the step is thus difficult. In the previous section we
have identified in detail the origin of this noise, the main source of which is thermal. The
autocorrelation analysis also indicates that the thermal fluctuations relax with time constant
τx ∼ 36 µs. This suggest a way to extract information about the kinesin step: select a sequence
of N consecutive steps and average them; as the time lapse between steps is �36 µs, the
thermal noise is completely uncorrelated from one step to the next. By averaging N steps, the
noise decreases like 1/

√
N while the signal which adds coherently survives.

This averaging process is meaningful only to the extent that the steps are properly
synchronized. As the step beginning ti is unknown a priori, we first choose a trivial function,
corresponding to the trajectory of the bead subsequent to an instantaneous motor step:

σ̃Fit(t) = aiϑ(t)e−t/τ + ci , (9)

where τ is fixed by time response of the bead, ai is the step size, t̄i is the starting time and ϑ(t)
the Heaviside function. ai and ci are determined by fitting the position of the bead, respectively
after and before the step. Then ti is adjusted, by minimizing the sum∫

[x(t − ti ) − σ(t)]2 dx (10)

with respect to ti . With this procedure the synchronization uncertainty is

δt = α

√
kBT

κx�2
τ, (11)

where � = 8 nm, and α � 1 and weakly depends on the guess function σ(t). The choice of the
guess function (equation (9)) is motivated by its simplicity. Different guess functions, which
take into account more complex motor trajectory (i.e. the kinesin makes the step at constant
speed or in an exponential manner), give very similar results. In our case δt � 20 µs.

We have averaged the data over 68 steps chosen among the best experimental sequences
(figure 6, empty circles, ◦). Data biased because of microtubule misalignment or suspicion
of multiple attachments are discarded. In agreement with previous works, the average step
amplitude is 8.0 ± 0.2 nm. We also observe that the bead approaches the final position in
∼30 µs with an exponential behaviour. This timescale is compatible with the exponential
decay measured in the autocorrelation analysis (figure 5), and corresponds to the relaxation
time response of the bead moving in a viscous environment. Even if the motor moved suddenly,
the bead would follow with this delay, imposed by the local friction and the stiffness of the
kinesin–bead linkage.

We do not observe, at this timescale and within our experimental resolution, any evidence
for substeps, slow conformational change or any other fine structure in the step.

We also see that, in the limit of weak thermal fluctuations (η(t)  1), equation (7)
becomes

xm(t) = xb(t) + τx ẋb(t) (12)

where τx is determined by the autocorrelation analysis (equation (8)). Thus, the motor position
xm can be directly deduced from the bead position xb (figure 6, triangles, �).

The experimental data indicate a step time ts � 20 µs, shorter than the thermal fluctuation
timescale. Obviously, the resolution is mainly limited by our synchronization procedure, which
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introduces a broadening of the kinesin step (equation (11)) and, therefore, the kinesin moves
even faster.

Such a short step-time is compatible with a simple free diffusion of the rear kinesin head,
moving over a distance of 16 nm to reach the next binding site. If we consider the kinesin head
like a 5 nm globular object [20] free to diffuse in the water, we can estimate the mean diffusion
time over the next binding site:

t = 	x2

2D
= 6πηR

2kBT
× (16 nm)2 � 1.5 µs. (13)

We have seen in the previous section that the diffusion coefficient of the bead moving close
to the microtubule should be corrected by a factor of 7. If we use the same correction for the
kinesin head diffusion, we estimate an average diffusion time of �10 µs, which is compatible
with the measured value.

Conversely, assuming that 100% of the energy released by the ATP hydrolysis is converted
into mechanical work and totally dissipated by hydrodynamical friction during the step, the
speed time t would be

t = 	x

vm
= 6πηR · (	x)2

EATP→ADP+Pi
� 1 µs. (14)

Of course, this assumption is quite optimistic, and the step time would be longer if only a part
of the energy is directly used to move the trailing head forward. Eventually, this shows that
both pure diffusion of the head and a power stroke mechanism would allow the kinesin to reach
the next binding site more quickly than about 10 µs.

The experimental noise does not allow us to discriminate between different stepping
models, such as smooth gliding of the motor head at constant speed, sudden jump or exponential
approach to the next binding site. Nevertheless, our results supply an upper limit to the step
timescale and definitely exclude any slow conformational change associated to the kinesin
motion at zero force, and they do not indicate any evidence for sub-8 nm steps for Neurospora
kinesin. These results are consistent with those observed under load by Carter et al [11]. They
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are compatible with motion in which all chemical steps happen without detectable motion at
subnanometre resolution and the one involving the chemo-mechanical coupling takes place on
a microsecond timescale (t  30 µs).

6. Conclusion

We have presented a study of the fast conformational change of the neurospora crassa Kinesin.
This molecular motor has been investigated using a simple and versatile tracking technique,
travelling wave tracking, which allows us to measure the particle position with the precision of
a few angstroms and a time resolution of 2 µs.

This technique is used to characterize the motion of the neurospora-kinesin in a bead assay,
in the absence of external forces. The typical kinesin motion, with discrete 8 nm steps and
relatively long dwell times, is observed. At the same time, the Brownian motion of the bead,
around the kinesin position, is recorded in two dimensions: along and perpendicularly to the
microtubule respectively. The kinesin–bead link is characterized and its stiffness is measured
independently along both directions.

As the thermal fluctuations of the bead hide the short-time details of the steps, the
signal/noise ratio has been improved by averaging many steps: we developed a simple
algorithm to synchronize the steps and average over many events. The final temporal resolution
is mainly limited by the bead response time, which is measured to be 30 µs.

Our results show that the kinesin stepping time is shorter than 30 µs, and that at this
timescale no structure in the step is observed. The experiment results exclude any motion
resulting from a slow conformational change and any mechanical substep longer than 30 µs.
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